
Initial Pathfinding Formative
Assessment Results
Patrick G. Bridges

Initial Pathfinding Research

• Preliminary work on application communication
system requirements

• Which calls does an application or framework use?

• Tells us what to optimize to help unchanged applications

• Described in assessment report

• More recently (since September) – examine the
higher-level communication patterns used

• What abstractions could applications be using?

• What abstractions should we be optimizing (or creating)?

Initial Pathfinding Results

• Looked at LLNL Comb, LANL CLAMR,
UNM/LANL Fiesta, various ECP frameworks
(Cabana, Trilinos) and miniapps

• Discussions with lab staff about additional
application needs and higher-level patterns

• Olga Pearce (LLNL - Comb)

• James Elliot (SNL – EMPIRE)

• Bob Robey (LANL – CLAMR/xRage)

• Galen Shipman (LANL)

Regular Halo Issues

• Optimization opportunities with multiple ranks per node
• Coalescing messages to the same destination with other ranks on same node
• Choosing the order in which to send messages

• Multi-threading and regular exchange patterns common
• Allow threads to send and receive messages independently to reduce

coupling
• Leverage static communication structure and type to reduce setup costs

• GPU data movement very challenging
• High overheads for packing data on the GPU
• MPI Datatype packing often has horrendous performance
• Complex tradeoffs in packing more buffers versus reducing

pack/send/recv/unpack overlap

• HIGRAD, Fiesta, Comb all face these issues

• Comb captures GPU tradeoff issues really well

Irregular Halo Issues

• Application-level array scatter/gather is ubiquitous
• Distributor and Halo classes in Cabana

• Distributor class in Trilinos/Tpetra

• L7 library in CLAMR (similar to xRage token library)

• Bulk synchronous application (and MPI!) abstractions
• Tightly couples multiple independent threads

• Caused by lack of good threaded communication primitives

• Combining messages with neighbor collectives could worsen

• Exacerbates imbalance problems in some important cases
(MueLu solves in EMPIRE)

Lots of MPI abstractions and
research on these issues

• Halo exchange optimization – neighbor collectives
• Benefit: MPI can coalesce message exchanges between ranks

• Cost: Reduces compute/communicate overlap between messages
in the halo (all given to collective at once!)

• Lots of benefits in complex halos, benefits less clear in more
straightforward (e.g. 9 or 27 point) halos

• Persistent, partitioned communication
• Set up communication paths once (e.g. the send or the collective,

the datatypes being exchanged)

• Give send or receive buffer to MPI when available

• MPI can decide whether to send immediately or wait for more data

• GPU datatype implementation optimizations

How useful are these abstractions?

• CLAMR uses the L7 library to scatter/gather halo cells in its (1D)
mesh array with neighbors

• L7_Setup/Push_Setup constructs communication plan

• L7_Update/Push_Update send and receives needed cells between
neighbor processes

• Multiple calls to update (with different types) per setup

• One cell can be sent to multiple neighbors, sent data not necessarily
contiguous but received data is contiguous

• Current L7_Update implementation

• Manually packs send buffers to each neighbor

• Irecv/Isend/Waitall for all incoming and outgoing messages

• Very similar to Cabana distributor code we’ve already seen

Neighbor Collective CLAMR/L7

• Goal: Initial evaluation, research platform

• How well do neighbor collectives map to the array scatter/gather
communication abstraction used in L7, Cabana, and Trilinos?

• Evaluate performance of existing MPI implementations

• Have an initial platform for testing additional optimizations

• Null hypotheses:

• Easy to implement given existing information

• Performance somewhat worse than L7 implementation but not
catastrophically bad

• Current neighbor collective implementations are naïve (basically just the
isend/irecv loop L7 already has)

• Leans heavily on derived datatypes, but may potentially get rid of
unnecessary copies in the original application communication plan

L7_Update with Neighbor
Collectives (pseudocode)

L7_Update(void *data_buffer, int type) {

ierr = MPI_Neighbor_alltoallw((void *)data_buffer,

l7_id_db->mpi_send_counts,

l7_id_db->mpi_send_offsets,

update_datatype->out_types,

(void *)data_buffer,

l7_id_db->mpi_recv_counts,

l7_id_db->mpi_recv_offsets,

update_datatype->in_types,

l7_id_db->comm);

return ierr;

}

Neighbor Collectives Performance in
the CLAMR L7 Library

0

20

40

60

80

100

120

140

1 (36) 2 (72) 4 (144) 8 (288) 12 (432)

CLAMR Weak Scaling Runtime
on LLNL Quartz Nodes cores

Original L7 Neighbor Collectives

• LLNL Quartz cluster nodes

• Weak scaled 1 node test
case:

• 2048x2048 coarse mesh

• Max 2 levels of refinement

• MPI only – 36 ranks per
node

• MVAPICH2/2.3, Intel
compiler

• Unexpected 20% across the
board performance
improvement on Quartz

R
u

n
ti

m
e

 (
se

cs
)

Nodes (MPI ranks)

Quartz Performance Improvement
• Original L7:

• L7_Push_Update very slow on Quartz – need to understand why

• Perhaps cache/NUMA problems in the face of imbalance

• Neighbor Collective L7:
• Quartz L7_Push_Update much faster with neighbor collectives

But initial results from Lassen
are completely different!
• Our first runs on Lassen with Spectrum MPI show 20%+ worse

CLAMR performance!
• Original L7_Push_Update didn’t take significant time
• Neighbor collective versions slower under Spectrum MPI
• Lassen has more memory, caches than Quartz

• Slowdowns likely due to the datatypes implementation
• Good research on datatype engines from mpich, mvapich, and

openmpi teams
• Demonstrations of datatypes optimization value important to push

vendors to adopt these optimizations

• This fits our original null hypothesis – worse but not terrible

• These wild performance swings and unpredictable
performance are exactly the problem we seek to address

Initial Neighbor Collective
Assessment Wrapup
• Graph topology was easy to create - L7 already had the data needed

• Initial performance results as expected, need to dig in more

• Reasonable performance with a solid datatype implementation

• Anomalous performance on Quartz worth examining to understand tradeoffs

• Concern: getting the datatypes right was complicated

• Neighbor calls require byte offsets, not type offsets

• Each source and destination pair had its own datatype

• Microbenchmark performance varied noticeably between different MPI implementations

• Reliance on datatypes a possible performance pitfall

• Additional neighbor collective advantages

• Original L7_Update didn’t work on GPU-resident buffers

• Switching to in-place MPI-based send/receive should allow it to work directly using a CUDA-
aware MPI (not yet tested)

• Derived datatypes support working with complex application data types – most irregular halo
abstractions don’t support this

Next Assessment Step Plans

• Three relevant abstractions (in addition to datatype infrastructure)
• Neighbor communication – All halo exchanges, but potential tradeoffs

• Persistent communication - Mostly static communication patterns (not
CLAMR/xRage)

• Partitioned communication – Halos on heavily threaded and GPU systems

• Neighbor collectives and Irregular Halos
• Understand and optimize what’s going on in CLAMR/L7

• Test GPU Update performance

• Implementing same strategy in Cabana or Trilonos would provide more
diverse testcases

• Integrate with persistent communication to allow more optimization when
communication pattern is static

• Examine message scheduling optimizations in neighbor communciations
[Ghazimirsaeed 2019], AMG codes [Bienz 2019]

Next Assessment Step Plans
(Cont’d)

• Neighbor Communication and Regular Halos

• Is more effective message scheduling and handling (e.g.
packing/unpacking/pipelining) worth it with simpler exchanges?

• Partitioned communication and GPUs an attractive starting point in
regular halos, with later combination with neighbor communication

• These Applications

• CLAMR – Non-persistent Neighbor Collectives

• Cabana/Trilinos – Persistent Neighbor Collectives, GPU support

• HIGRAD/Fiesta – Partitioned Communication (Threads, then GPUs)

• Comb
• Both neighbor communication and partitioned communication are options

• Persistent neighbor collectives from GPUs is the current thinking

Questions?

